Main Menu

Immunizations

Each vaccine fights against a specific type of germ (virus or bacteria). When scientists develop a vaccine, they design it based on details about the germ, such as how it infects cells and how the immune system responds to it.

The vaccines we have available today are administered at different times in a person’s life, at different intervals and through different routes to provide optimal protection. Some vaccines are recommended for use during infancy, while others are administered to adults. Some vaccines are best administered via needle injection into the skin or muscle, while others work best by mouth or nasal inhalation.

Today there are five main types of vaccines that infants and young children commonly receive:

Live, attenuated vaccines

Live, attenuated vaccines fight viruses. These vaccines contain a version of the living virus that has been weakened so that it does not cause serious disease in people with healthy immune systems. Because live, attenuated vaccines are the closest thing to a natural infection, they are good teachers for the immune system. Examples of live, attenuated vaccines include measles, mumps, and rubella vaccine (MMR) and varicella (chickenpox) vaccine. Even though these vaccines are very effective, not everyone can receive them. Children with weakened immune systems—for example, those who are undergoing chemotherapy—cannot get live vaccines.

Inactivated vaccines

Inactivated vaccines also fight viruses. These vaccines are made by inactivating, or killing, the virus during the process of making the vaccine. The inactivated polio vaccine is an example of this type of vaccine. Inactivated vaccines produce immune responses in different ways than live, attenuated vaccines. Often, multiple doses are necessary to build up and/or maintain immunity.

Toxoid vaccines

Toxoid vaccines prevent diseases caused by bacteria that produce toxins (poisons) in the body. In the process of making these vaccines, the toxins are weakened so they cannot cause illness. Weakened toxins are called toxoids. When the immune system receives a vaccine containing a toxoid, it learns how to fight off the natural toxin. The DTaP vaccine contains diphtheria and tetanus toxoids.

Subunit vaccines

Subunit vaccines include only parts of the virus or bacteria, or subunits, instead of the entire germ. Because these vaccines contain only the essential antigens and not all the other molecules that make up the germ, side effects are less common. The pertussis (whooping cough) component of the DTaP vaccine is an example of a subunit vaccine.

Conjugate vaccines

Conjugate vaccines fight a different type of bacteria. These bacteria have antigens with an outer coating of sugar-like substances called polysaccharides. This type of coating disguises the antigen, making it hard for a young child’s immature immune system to recognize it and respond to it. Conjugate vaccines are effective for these types of bacteria because they connect (or conjugate) the polysaccharides to antigens that the immune system responds to very well. This linkage helps the immature immune system react to the coating and develop an immune response. An example of this type of vaccine is the Haemophilus influenzae type B (Hib) vaccine.

Vaccines Require More Than One Dose

There are four reasons that babies—and even teens or adults for that matter—who receive a vaccine for the first time may need more than one dose:


Reference: Center for Disease Control and Prevention